Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.409
Filtrar
1.
Nat Commun ; 15(1): 3473, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724563

RESUMO

Neuronal differentiation-the development of neurons from neural stem cells-involves neurite outgrowth and is a key process during the development and regeneration of neural functions. In addition to various chemical signaling mechanisms, it has been suggested that thermal stimuli induce neuronal differentiation. However, the function of physiological subcellular thermogenesis during neuronal differentiation remains unknown. Here we create methods to manipulate and observe local intracellular temperature, and investigate the effects of noninvasive temperature changes on neuronal differentiation using neuron-like PC12 cells. Using quantitative heating with an infrared laser, we find an increase in local temperature (especially in the nucleus) facilitates neurite outgrowth. Intracellular thermometry reveals that neuronal differentiation is accompanied by intracellular thermogenesis associated with transcription and translation. Suppression of intracellular temperature increase during neuronal differentiation inhibits neurite outgrowth. Furthermore, spontaneous intracellular temperature elevation is involved in neurite outgrowth of primary mouse cortical neurons. These results offer a model for understanding neuronal differentiation induced by intracellular thermal signaling.


Assuntos
Diferenciação Celular , Neurônios , Transdução de Sinais , Temperatura , Animais , Células PC12 , Neurônios/fisiologia , Neurônios/citologia , Camundongos , Ratos , Crescimento Neuronal , Neurogênese/fisiologia , Neuritos/metabolismo , Neuritos/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Termometria/métodos , Termogênese/fisiologia
2.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713624

RESUMO

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Córtex Cerebral , Receptores ErbB , Proteínas Hedgehog , Proteínas do Tecido Nervoso , Células-Tronco Neurais , Neurogênese , Fator de Transcrição 2 de Oligodendrócitos , Fator de Transcrição PAX6 , Animais , Neurogênese/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Camundongos , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/genética , Neuroglia/metabolismo , Neuroglia/citologia , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Bulbo Olfatório/metabolismo , Bulbo Olfatório/citologia , Linhagem da Célula , Humanos
3.
J Nanobiotechnology ; 22(1): 220, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698449

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can differentiate into Schwann cells (SCs) during peripheral nerve injury; in our previous research, we showed that SC-derived exosomes (SC-exos) played a direct induction role while fibroblast-derived exosomes (Fb-exos) had no obvious induction role. The induction role of neural stem cell (NSC)-derived exosomes (NSC-exos) has also been widely confirmed. However, no studies have compared the induction effects of these three types of cells at the same time. Therefore, by investigating the effect of these three cell-derived exosomes upon the induction of BMSCs to differentiate into SCs, this study explored the role of different exosomes in promoting the differentiation of stem cells into SCs cells, and conducted a comparison between the two groups by RNA sequencing to further narrow the range of target genes and related gene pathways in order to study their related mechanisms. MATERIALS AND METHODS: We extracted exosomes from SCs, fibroblasts (Fb) and neural stem cells (NSC) and then investigated the ability of these exosomes to induce differentiation into BMSCs under different culture conditions. The expression levels of key proteins and gene markers were detected in induced cells by fluorescence immunoassays, western blotting and polymerase chain reaction (PCR); then, we statistically compared the relative induction effects under different conditions. Finally, we analyzed the three types of exosomes by RNA-seq to predict target genes and related gene pathways. RESULTS: BMSCs were cultured by three media: conventional (no induction), pre-induction or pre-induction + original induction medium (ODM) with exosomes of the same cell origin under different culture conditions. When adding the three different types of exosomes separately, the overall induction of BMSCs to differentiate into SCs was significantly increased (P < 0.05). The induction ability was ranked as follows: pre-induction + ODM + exosome group > pre-induction + exosome group > non-induction + exosome group. Using exosomes from different cell sources under the same culture conditions, we observed the following trends under the three culture conditions: RSC96-exos group ≥ NSC-exos group > Fb-exos group. The overall ability to induce BMSCs into SCs was significantly greater in the RSC96-exos group and the NSC-exos group. Although there was no significant difference in induction efficiency when comparing these two groups, the overall induction ability of the RSC96-exos group was slightly higher than that of the NSC-exos group. By combining the differentiation induction results with the RNA-seq data, the three types of exosomes were divided into three comparative groups: RSC vs. NSC, RSC vs. Fb and NSC vs. Fb. We identified 203 differentially expressed mRNA target genes in these three groups. Two differentially expressed genes were upregulated simultaneously, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). We did not identify any co-upregulated target genes for the miRNAs, but did identify one target gene of the lncRNAs, namely ENSRNOG00000065005. Analysis identified 90 GO terms related to nerves and axons in the mRNAs; in addition, KEGG enrichment and GASA analysis identified 13 common differential expression pathways in the three groups. CONCLUSIONS: Our analysis found that pre-induction + ODM + RSC96/NSC-exos culture conditions were most conducive with regards to induction and differentiation. RSC96-exos and NSC-exos exhibited significantly greater differentiation efficiency of BMSCs into SCs. Although there was no statistical difference, the data indicated a trend for RSC96-exos to be advantageous We identified 203 differentially expressed mRNAs between the three groups and two differentially expressed target mRNAs were upregulated, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). 90 GO terms were related to nerves and axons. Finally, we identified 13 common differentially expressed pathways across our three types of exosomes. It is hoped that the efficiency of BMSCs induction differentiation into SCs can be improved, bringing hope to patients and more options for clinical treatment.


Assuntos
Diferenciação Celular , Exossomos , Células-Tronco Mesenquimais , Células de Schwann , Exossomos/metabolismo , Células de Schwann/citologia , Células de Schwann/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Ratos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Ratos Sprague-Dawley , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo
4.
Tissue Eng Regen Med ; 21(4): 625-639, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578425

RESUMO

BACKGROUND: Syringomyelia is a progressive chronic disease that leads to nerve pain, sensory dissociation, and dyskinesia. Symptoms often do not improve after surgery. Stem cells have been widely explored for the treatment of nervous system diseases due to their immunoregulatory and neural replacement abilities. METHODS: In this study, we used a rat model of syringomyelia characterized by focal dilatation of the central canal to explore an effective transplantation scheme and evaluate the effect of mesenchymal stem cells and induced neural stem cells for the treatment of syringomyelia. RESULTS: The results showed that cell transplantation could not only promote syrinx shrinkage but also stimulate the proliferation of ependymal cells, and the effect of this result was related to the transplantation location. These reactions appeared only when the cells were transplanted into the cavity. Additionally, we discovered that cell transplantation transformed activated microglia into the M2 phenotype. IGF1-expressing M2 microglia may play a significant role in the repair of nerve pain. CONCLUSION: Cell transplantation can promote cavity shrinkage and regulate the local inflammatory environment. Moreover, the proliferation of ependymal cells may indicate the activation of endogenous stem cells, which is important for the regeneration and repair of spinal cord injury.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Células-Tronco Neurais , Ratos Sprague-Dawley , Siringomielia , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Siringomielia/terapia , Ratos , Proliferação de Células , Epêndima , Masculino , Microglia/metabolismo , Modelos Animais de Doenças
5.
Cells ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667286

RESUMO

Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , AVC Isquêmico , Células-Tronco Neurais , Sinapses , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Células-Tronco Neurais/citologia , AVC Isquêmico/patologia , AVC Isquêmico/terapia , Ratos , Sinapses/metabolismo , Masculino , Neuritos/metabolismo , Encéfalo/patologia , Isquemia Encefálica/terapia , Isquemia Encefálica/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/patologia
6.
EMBO Rep ; 25(5): 2202-2219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600346

RESUMO

Neural progenitor cells within the cerebral cortex undergo a characteristic switch between symmetric self-renewing cell divisions early in development and asymmetric neurogenic divisions later. Yet, the mechanisms controlling this transition remain unclear. Previous work has shown that early but not late neural progenitor cells (NPCs) endogenously express the autism-linked transcription factor Foxp1, and both loss and gain of Foxp1 function can alter NPC activity and fate choices. Here, we show that premature loss of Foxp1 upregulates transcriptional programs regulating angiogenesis, glycolysis, and cellular responses to hypoxia. These changes coincide with a premature destabilization of HIF-1α, an elevation in HIF-1α target genes, including Vegfa in NPCs, and precocious vascular network development. In vitro experiments demonstrate that stabilization of HIF-1α in Foxp1-deficient NPCs rescues the premature differentiation phenotype and restores NPC maintenance. Our data indicate that the endogenous decline in Foxp1 expression activates the HIF-1α transcriptional program leading to changes in the tissue environment adjacent to NPCs, which, in turn, might alter their self-renewal and neurogenic capacities.


Assuntos
Córtex Cerebral , Fatores de Transcrição Forkhead , Subunidade alfa do Fator 1 Induzível por Hipóxia , Células-Tronco Neurais , Proteínas Repressoras , Transdução de Sinais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Animais , Camundongos , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Neovascularização Fisiológica/genética , Diferenciação Celular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Neurogênese/genética , Glicólise , Angiogênese
7.
Exp Neurol ; 376: 114779, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621449

RESUMO

Neural stem cells have exhibited efficacy in pre-clinical models of spinal cord injury (SCI) and are on a translational path to human testing. We recently reported that neural stem cells must be driven to a spinal cord fate to optimize host axonal regeneration into sites of implantation in the injured spinal cord, where they subsequently form neural relays across the lesion that support significant functional improvement. We also reported methods of deriving and culturing human spinal cord neural stem cells derived from embryonic stem cells that can be sustained over serial high passage numbers in vitro, providing a potentially optimized cell source for human clinical trials. We now report further optimization of methods for deriving and sustaining cultures of human spinal cord neural stem cell lines that result in improved karyotypic stability while retaining anatomical efficacy in vivo. This development improves prospects for safe human translation.


Assuntos
Diferenciação Celular , Células-Tronco Neurais , Traumatismos da Medula Espinal , Medula Espinal , Humanos , Células-Tronco Neurais/citologia , Medula Espinal/citologia , Animais , Traumatismos da Medula Espinal/terapia , Diferenciação Celular/fisiologia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Camundongos , Transplante de Células-Tronco/métodos
8.
J Vis Exp ; (206)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682940

RESUMO

Resolutive cures for spinal cord injuries (SCIs) are still lacking, due to the complex pathophysiology. One of the most promising regenerative approaches is based on stem cell transplantation to replace lost tissue and promote functional recovery. This approach should be further explored better in vitro and ex vivo for safety and efficacy before proceeding with more expensive and time-consuming animal testing. In this work, we show the establishment of a long-term platform based on mouse spinal cord (SC) organotypic slices transplanted with human neural stem cells to test cellular replacement therapies for SCIs. Standard SC organotypic cultures are maintained for around 2 or 3 weeks in vitro. Here, we describe an optimized protocol for long-term maintenance (≥30 days) for up to 90 days. The medium used for long-term culturing of SC slices was also optimized for transplanting neural stem cells into the organotypic model. Human SC-derived neuroepithelial stem (h-SC-NES) cells carrying a green fluorescent protein (GFP) reporter were transplanted into mouse SC slices. Thirty days after the transplant, cells still show GFP expression and a low apoptotic rate, suggesting that the optimized environment sustained their survival and integration inside the tissue. This protocol represents a robust reference for efficiently testing cell replacement therapies in the SC tissue. This platform will allow researchers to perform an ex vivo pre-screening of different cell transplantation therapies, helping them to choose the most appropriate strategy before proceeding with in vivo experiments.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Medula Espinal , Animais , Camundongos , Traumatismos da Medula Espinal/terapia , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Medula Espinal/citologia , Técnicas de Cultura de Órgãos/métodos , Transplante de Células-Tronco/métodos
9.
Sci Adv ; 10(17): eade1650, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669326

RESUMO

While the kinesin-2 motors KIF3A and KIF3B have essential roles in ciliogenesis and Hedgehog (HH) signal transduction, potential role(s) for another kinesin-2 motor, KIF17, in HH signaling have yet to be explored. Here, we investigated the contribution of KIF17 to HH-dependent cerebellar development, where Kif17 is expressed in both HH-producing Purkinje cells and HH-responding cerebellar granule neuron progenitors (CGNPs). Germline Kif17 deletion in mice results in cerebellar hypoplasia due to reduced CGNP proliferation, a consequence of decreased HH pathway activity mediated through decreased Sonic HH (SHH) protein. Notably, Purkinje cell-specific Kif17 deletion partially phenocopies Kif17 germline mutants. Unexpectedly, CGNP-specific Kif17 deletion results in the opposite phenotype-increased CGNP proliferation and HH target gene expression due to altered GLI transcription factor processing. Together, these data identify KIF17 as a key regulator of HH-dependent cerebellar development, with dual and opposing roles in HH-producing Purkinje cells and HH-responding CGNPs.


Assuntos
Cerebelo , Cerebelo/anormalidades , Proteínas Hedgehog , Cinesinas , Malformações do Sistema Nervoso , Células de Purkinje , Animais , Cinesinas/metabolismo , Cinesinas/genética , Cerebelo/metabolismo , Cerebelo/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos , Células de Purkinje/metabolismo , Transdução de Sinais , Proliferação de Células , Camundongos Knockout , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Deficiências do Desenvolvimento
10.
Sci Rep ; 14(1): 9355, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654093

RESUMO

Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.


Assuntos
Córtex Cerebral , Transportadores de Ácidos Monocarboxílicos , Neurogênese , Organoides , RNA Mensageiro , Simportadores , Receptores alfa dos Hormônios Tireóideos , Feminino , Humanos , Gravidez , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/metabolismo , Organoides/metabolismo , Primeiro Trimestre da Gravidez/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Simportadores/genética , Simportadores/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética
11.
Acta Biomater ; 180: 308-322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615813

RESUMO

Motor functional improvement represents a paramount treatment objective in the post-spinal cord injury (SCI) recovery process. However, neuronal cell death and axonal degeneration following SCI disrupt neural signaling, impeding the motor functional recovery. In this study, we developed a multifunctional decellularized spinal cord-derived extracellular matrix (dSECM), crosslinked with glial cell-derived neurotrophic factor (GDNF), to promote differentiation of stem cells into neural-like cells and facilitate axonogenesis and remyelination. After decellularization, the immunogenic cellular components were effectively removed in dSECM, while the crucial protein components were retained which supports stem cells proliferation and differentiation. Furthermore, sustained release of GDNF from the dSECM facilitated axonogenesis and remyelination by activating the PI3K/Akt and MEK/Erk pathways. Our findings demonstrate that the dSECM-GDNF platform promotes neurogenesis, axonogenesis, and remyelination to enhance neural signaling, thereby yielding promising therapeutic effects for motor functional improvement after SCI. STATEMENT OF SIGNIFICANCE: The dSECM promotes the proliferation and differentiation of MSCs or NSCs by retaining proteins associated with positive regulation of neurogenesis and neuronal differentiation, while eliminating proteins related to negative regulation of neurogenesis. After crosslinking, GDNF can be gradually released from the platform, thereby promoting neural differentiation, axonogenesis, and remyelination to enhance neural signaling through activation of the PI3K/Akt and MEK/Erk pathways. In vivo experiments demonstrated that dSECM-GDNF/MSC@GelMA hydrogel exhibited the ability to facilitate neuronal regeneration at 4 weeks post-surgery, while promoting axonogenesis and remyelination at 8 weeks post-surgery, ultimately leading to enhanced motor functional recovery. This study elucidates the ability of neural regeneration strategy to promote motor functional recovery and provides a promising approach for designing multifunctional tissue for SCI treatment.


Assuntos
Matriz Extracelular , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Neurogênese , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Remielinização , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Neurogênese/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Matriz Extracelular/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Ratos , Feminino , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
12.
Exp Cell Res ; 438(1): 114049, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642790

RESUMO

BACKGROUND: Acellular nerve allografts (ANAs) have been successfully applied to bridge facial nerve defects, and transplantation of stem cells may enhance the regenerative results. Up to now, application of hair follicle epidermal neural crest stem cell-derived Schwann cell-like cells (EPI-NCSC-SCLCs) combined with ANAs for bridging facial nerve defects has not been reported. METHODS: The effect of ANAs laden with green fluorescent protein (GFP)-labeled EPI-NCSC-SCLCs (ANA + cells) on bridging rat facial nerve trunk defects (5-mm-long) was detected by functional and morphological examination, as compared with autografts and ANAs, respectively. RESULTS: (1) EPI-NCSC-SCLCs had good compatibility with ANAs in vitro. (2) In the ANA + cells group, the GFP signals were observed by in vivo imaging system for small animals within 8 weeks, and GFP-labeled EPI-NCSC-SCLCs were detected in the tissue slices at 16 weeks postoperatively. (3) The facial symmetry at rest after surgery in the ANA + cells group was better than that in the ANA group (p < 0.05), and similar to that in the autograft group (p > 0.05). The initial recovery time of vibrissal and eyelid movement in the ANA group was 2 weeks later than that in the other two groups. (4) The myelinated fibers, myelin sheath thickness and diameter of the axons of the buccal branches in the ANA group were significantly worse than those in the other two groups (P < 0.05), and the results in the ANA + cells group were similar to those in the autograft group (p > 0.05). CONCLUSIONS: EPI-NCSC-SCLCs could promote functional and morphological recovery of rat facial nerve defects, and GFP labeling could track the transplanted EPI-NCSC-SCLCs in vivo for a certain period of time. These may provide a novel choice for clinical treatment of peripheral nerve defects.


Assuntos
Aloenxertos , Nervo Facial , Proteínas de Fluorescência Verde , Folículo Piloso , Regeneração Nervosa , Crista Neural , Células de Schwann , Animais , Células de Schwann/transplante , Folículo Piloso/transplante , Folículo Piloso/citologia , Crista Neural/citologia , Crista Neural/transplante , Ratos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/transplante , Células-Tronco Neurais/citologia , Ratos Sprague-Dawley , Traumatismos do Nervo Facial/terapia , Traumatismos do Nervo Facial/patologia , Traumatismos do Nervo Facial/cirurgia , Masculino
13.
J Neurosci Methods ; 406: 110114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522633

RESUMO

BACKGROUND: Induced pluripotent stem cells (iPSCs) derived neural stem cells (NSCs) provide a potential for autologous neural transplantation therapy following neurological insults. Thus far, in preclinical studies the donor iPSCs-NSCs are mostly of human or mouse origin with concerns centering around graft rejection when applied to rat brain injury models. For better survival and integration of transplanted cells in the injured brain in rat models, use of rat-iPSC-NSCs and in combination with biomaterials is of advantageous. Herein, we report a detailed method in generating rat iPSCs with improved reprogramming efficiency and differentiation into neurons. NEW METHOD: Rat fibroblasts were reprogrammed into iPSCs with polybrene and EF1α-STEMCCA-LoxP lentivirus vector. Pluripotency characterization, differentiation into neuronal linage cells were assessed with RT-qPCR, Western blotting, immunostaining and patch-clamp methods. Cells were cultured in a custom-designed integrin array system as well as in a hydrogel-based 3D condition. RESULTS: We describe a thorough method for the generation of rat-iPSC-NSCs, and identify integrin αvß8 as a substrate for the optimal growth of rat-iPSC-NSCs. Furthermore, with hydrogel as the supporting biomaterial in the 3-D culture, when combined with integrin αvß8 binding peptide, it forms a conducive environment for optimal growth and differentiation of iPSC-NSCs into mature neurons. COMPARISON WITH EXISTING METHODS: Published studies about rat-iPSC-NSCs are rare. This study provides a detailed protocol for the generation of rat iPSC-NSCs and optimal growth conditions for neuronal differentiation. Our method is useable for studies to assess the utility of rat iPSC-NSCs for neural transplantation in rat brain injury models.


Assuntos
Diferenciação Celular , Fibroblastos , Células-Tronco Pluripotentes Induzidas , Neurônios , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Fibroblastos/fisiologia , Fibroblastos/citologia , Neurônios/citologia , Neurônios/fisiologia , Diferenciação Celular/fisiologia , Ratos , Células Cultivadas , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Técnicas de Cultura de Células/métodos , Ratos Sprague-Dawley
14.
Stem Cells Transl Med ; 13(5): 490-504, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38387006

RESUMO

Regenerative cell therapy to replenish the missing neurons and glia in the aganglionic segment of Hirschsprung disease represents a promising treatment option. However, the success of cell therapies for this condition are hindered by poor migration of the transplanted cells. This limitation is in part due to a markedly less permissive extracellular environment in the postnatal gut than that of the embryo. Coordinated interactions between enteric neural crest-derived cells (ENCDCs) and their local environment drive migration along the embryonic gut during development of the enteric nervous system. Modifying transplanted cells, or the postnatal extracellular environment, to better recapitulate embryonic ENCDC migration could be leveraged to improve the engraftment and coverage of stem cell transplants. We compared the transcriptomes of ENCDCs from the embryonic intestine to that of postnatal-derived neurospheres and identified 89 extracellular matrix (ECM)-associated genes that are differentially expressed. Agrin, a heparin sulfate proteoglycan with a known inhibitory effect on ENCDC migration, was highly over-expressed by postnatal-derived neurospheres. Using a function-blocking antibody and a shRNA-expressing lentivirus, we show that inhibiting agrin promotes ENCDC migration in vitro and following cell transplantation ex vivo and in vivo. This enhanced migration is associated with an increased proportion of GFAP + cells, whose migration is especially enhanced.


Assuntos
Agrina , Movimento Celular , Células-Tronco Neurais , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Camundongos , Agrina/metabolismo , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/citologia , Colo/metabolismo , Colo/citologia , Crista Neural/metabolismo , Crista Neural/citologia , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/terapia , Transplante de Células-Tronco/métodos
15.
ACS Biomater Sci Eng ; 10(5): 3148-3163, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38227432

RESUMO

The central nervous system (CNS) has a limited regenerative capacity because a hostile environment prevents tissue regeneration after damage or injury. Neural stem/progenitor cells (NSPCs) are considered a potential resource for CNS repair, which raises the issue of adequate cultivation and expansion procedures. Cationic charge supports the survival and adhesion of NSPCs. Typically, tissue culture plates with cationic coatings, such as poly-l-ornithine (PLO), have been used to culture these cell types (NSPCs). Yet presently, little is known about the impact of cationic charge concentration on the viability, proliferation, and differentiation capacity of NSPCs. Therefore, we have recently developed well-defined, fully synthetic hydrogel systems G1 (gel 1) to G6 (gel 6) that allow for the precise control of the concentration of the cationic trimethylaminoethyl acrylate (TMAEA) molecule associated with the polymer in a range from 0.06 to 0.91 µmol/mg. When murine NSPCs were cultured on these gels under differentiation conditions, we observed a strong correlation of cationic charge concentration with NSPC survival. In particular, neurons were preferentially formed on gels with a higher cationic charge concentration, whereas astrocytes and oligodendrocytes favored weakly charged or even neutral gel surfaces. To test the properties of the gels under proliferative conditions, the NSPCs were cultivated in the presence of fibroblast growth factor 2 (FGF2). The cytokine significantly increased the number of NSPCs but delayed the differentiation toward neurons and glia cells. Thus, the hydrogels are compatible with the survival, expansion, and differentiation of NSPCs and may be useful to create supportive environments in transplantation approaches.


Assuntos
Cátions , Diferenciação Celular , Proliferação de Células , Hidrogéis , Células-Tronco Neurais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Camundongos , Cátions/química , Cátions/farmacologia , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Neurônios/efeitos dos fármacos , Neurônios/citologia
16.
Nature ; 626(8000): 881-890, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297124

RESUMO

The pace of human brain development is highly protracted compared with most other species1-7. The maturation of cortical neurons is particularly slow, taking months to years to develop adult functions3-5. Remarkably, such protracted timing is retained in cortical neurons derived from human pluripotent stem cells (hPSCs) during in vitro differentiation or upon transplantation into the mouse brain4,8,9. Those findings suggest the presence of a cell-intrinsic clock setting the pace of neuronal maturation, although the molecular nature of this clock remains unknown. Here we identify an epigenetic developmental programme that sets the timing of human neuronal maturation. First, we developed a hPSC-based approach to synchronize the birth of cortical neurons in vitro which enabled us to define an atlas of morphological, functional and molecular maturation. We observed a slow unfolding of maturation programmes, limited by the retention of specific epigenetic factors. Loss of function of several of those factors in cortical neurons enables precocious maturation. Transient inhibition of EZH2, EHMT1 and EHMT2 or DOT1L, at progenitor stage primes newly born neurons to rapidly acquire mature properties upon differentiation. Thus our findings reveal that the rate at which human neurons mature is set well before neurogenesis through the establishment of an epigenetic barrier in progenitor cells. Mechanistically, this barrier holds transcriptional maturation programmes in a poised state that is gradually released to ensure the prolonged timeline of human cortical neuron maturation.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas , Células-Tronco Neurais , Neurogênese , Neurônios , Adulto , Animais , Humanos , Camundongos , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Fatores de Tempo , Transcrição Gênica
17.
Science ; 382(6667): eadf3786, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824652

RESUMO

During early telencephalic development, intricate processes of regional patterning and neural stem cell (NSC) fate specification take place. However, our understanding of these processes in primates, including both conserved and species-specific features, remains limited. Here, we profiled 761,529 single-cell transcriptomes from multiple regions of the prenatal macaque telencephalon. We deciphered the molecular programs of the early organizing centers and their cross-talk with NSCs, revealing primate-biased galanin-like peptide (GALP) signaling in the anteroventral telencephalon. Regional transcriptomic variations were observed along the frontotemporal axis during early stages of neocortical NSC progression and in neurons and astrocytes. Additionally, we found that genes associated with neuropsychiatric disorders and brain cancer risk might play critical roles in the early telencephalic organizers and during NSC progression.


Assuntos
Células-Tronco Neurais , Neurogênese , Telencéfalo , Animais , Feminino , Gravidez , Macaca , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Telencéfalo/citologia , Telencéfalo/embriologia , Neurogênese/genética , Peptídeo Semelhante a Galanina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transtornos Mentais/genética , Doenças do Sistema Nervoso/genética , Neoplasias Encefálicas/genética
18.
J Virol ; 97(10): e0069623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796129

RESUMO

IMPORTANCE: Human cytomegalovirus (HCMV) infection is the leading cause of non-heritable birth defects worldwide. HCMV readily infects the early progenitor cell population of the developing brain, and we have found that infection leads to significantly downregulated expression of key neurodevelopmental transcripts. Currently, there are no approved therapies to prevent or mitigate the effects of congenital HCMV infection. Therefore, we used human-induced pluripotent stem cell-derived organoids and neural progenitor cells to elucidate the glycoproteins and receptors used in the viral entry process and whether antibody neutralization was sufficient to block viral entry and prevent disruption of neurodevelopmental gene expression. We found that blocking viral entry alone was insufficient to maintain the expression of key neurodevelopmental genes, but neutralization combined with neurotrophic factor treatment provided robust protection. Together, these studies offer novel insight into mechanisms of HCMV infection in neural tissues, which may aid future therapeutic development.


Assuntos
Anticorpos Neutralizantes , Infecções por Citomegalovirus , Citomegalovirus , Expressão Gênica , Fatores de Crescimento Neural , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/uso terapêutico , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Organoides/citologia , Organoides/metabolismo , Organoides/virologia , Receptores Virais/antagonistas & inibidores , Receptores Virais/metabolismo , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos
19.
Mol Neurobiol ; 60(8): 4472-4487, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37118325

RESUMO

The study of psychiatric and neurological diseases requires the substrate in which the disorders occur, that is, the nervous tissue. Currently, several types of human bio-specimens are being used for research, including postmortem brains, cerebrospinal fluid, induced pluripotent stem (iPS) cells, and induced neuronal (iN) cells. However, these samples are far from providing a useful predictive, diagnostic, or prognostic biomarker. The olfactory epithelium is a region close to the brain that has received increased interest as a research tool for the study of brain mechanisms in complex neuropsychiatric and neurological diseases. The olfactory sensory neurons are replaced by neurogenesis throughout adult life from stem cells on the basement membrane. These stem cells are multipotent and can be propagated in neurospheres, proliferated in vitro and differentiated into multiple cell types including neurons and glia. For all these reasons, olfactory epithelium provides a unique resource for investigating neuronal molecular markers of neuropsychiatric and neurological diseases. Here, we describe the isolation and culture of human differentiated neurons and glial cells from olfactory epithelium of living subjects by an easy and non-invasive exfoliation method that may serve as a useful tool for the research in brain diseases.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Separação Celular , Neurogênese , Neuroglia , Neurônios , Mucosa Olfatória , Humanos , Membrana Basal/citologia , Biomarcadores/análise , Adesão Celular , Técnicas de Cultura de Células/métodos , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Meios de Cultura/química , Citometria de Fluxo , Imuno-Histoquímica , Magnetismo , Células-Tronco Neurais/citologia , Neuroglia/citologia , Neurônios/citologia , Mucosa Olfatória/citologia , Especificidade de Órgãos
20.
J Cell Physiol ; 238(1): 137-150, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350183

RESUMO

Our previous study demonstrated that ultrasound is able to promote differentiation on neural stem cells (NSCs), and dual-frequency ultrasound promotes this effect due to enhanced acoustic cavitation compared with single-frequency ultrasound. However, the underlying biological reasons have not been well disclosed. The purpose of this study was to investigate the underlying bioeffects, mechanisms and signaling pathways of dual-frequency ultrasound on NSC differentiation. The morphology, neurite outgrowth, and differentiation percentages were investigated under various dual-frequency simulation parameters with exposure periods varying from 5 to 15 min. Morphological observations identified that dual-frequency ultrasound stimulation promoted ultrasound dose-dependent neurite outgrowth. In particular, cells exposed for 10 min/2 days showed optimal neurite outgrowth and neuron differentiation percentages. In addition, live cell calcium images showed that dual-frequency ultrasound enhanced the internal calcium content of the cells, and calcium ions entering cells from the extracellular environment could be observed. Dual frequency ultrasound exposure enhanced extracellular calcium influx and upregulated extracellular signal-regulated kinases 1/2 (ERK1/2) expression. Observations from immunostaining and protein expression examinations also identified that dual-frequency ultrasound promoted brain-derived neurotrophic factor (BDNF) secretion from astrocytes derived from NSCs. In summary, evidence supports that dual-frequency ultrasound effectively enhances functional neuron differentiation via calcium channel regulation via the downstream ERK1/2 pathway and promotes BDNF secretion to serve as feedback to cascade neuron differentiation. The results may provide an alternative for cell-based therapy in brain injury.


Assuntos
Diferenciação Celular , Sistema de Sinalização das MAP Quinases , Células-Tronco Neurais , Ondas Ultrassônicas , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Células Cultivadas , Células-Tronco Neurais/citologia , Neurônios/citologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA